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ferent cases of doubling the unit-cell volume, for in- 
stance doubling in the c direction or in the c plane as 
exemplified above. 

Also, in their Table 5 a minimum volume ratio of 
eight is assigned to the subgroups D]h, D]~,, D9h, D] ° 
and of four to the subgroup D~ of the space group 
D]h whilst according to the example above this volume 
ratio is two. (No other errors have been found how- 
ever.) 

May hearty thanks are due to Dr Forrest L. Carter, 
guest scientist from the Naval Research Laboratory, 
Washington, D. C., for improvements in style and 
presentation. 
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A complete examination of the shape of the neutron-scattering cross-section curves at very small 
scattering vectors, of the order of 0.05 ~ 0"1 nm-1, has been made for homogeneously oriented nematic 
liquid crystals. It is shown that the shape of the scattering curves at small angles is mainly determined 
by the kind of dislocation configuration exhibited by homogeneously oriented nematic liquid crystals. 
This study will furnish a partial guide to the construction of scattering relations for any kind of possible 
dislocation configuration in homogeneously oriented nematic liquid crystals, e.g. for stationary straight 
edge dislocations, moving edge dislocations, oscillating edge dislocations, curved dislocations and 
dislocation networks. 

1. Small-angle scattering of neutrons and X-rays by 
dislocations in homogeneously oriented nematic liquid 

crystals 

In a previous paper (Olivei, 1973) we have already dis- 
cussed the usefulness of using cold-neutron scattering 
for probing the molecular structure of homogeneously 
oriented nematic liquid crystals in the absence of any 
external magnetic or electric fields. In that paper, how- 
ever, we did not examine the cold-neutron scattering 
at very small values of the scattering vector (of the 
order of 0.05~0-1 nm-1). In fact, such a study should 
yield very interesting results about the existence and 
the structure &dislocations in homogeneously oriented 
nematic liquid-crystal layers. 

The existence of lines or regions of discontinuity in 
the ordered structure of homogeneously oriented ne- 
matic liquid-crystal layers makes possible the setting 
up of dislocations of various kinds. 

The use of cold-neutron small-angle scattering for 
studying dislocations in homogeneously oriented ne- 
matic liquid-crystal structures has advantages as com- 
pared to X-ray scattering. In principle, small-angle 
scattering of X-rays and neutrons is induced by long- 
range fluctuations of density or refractive index in a 
sample. Such fluctuations are produced by many types 
of structural disorder, e.g. dislocations, defect clusters, 
critical phenomena. 

The first advantage of neutrons as compared to 
X-rays concerns the change of the wavelength. In most 
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cases, X-ray experiments are performed in the range 
of 1.5 A. With neutrons the liquid-crystal sample ab- 
sorption is relatively low and wavelengths between 5 
and 15 A can be used easily. It is even possible to go 
to 20 A or more. 

The advantage of the greater wavelength is twofold: 
Bragg scattering is completely avoided, and~therefore 
also double Bragg scattering, which induces an addi- 
tional intensity at small angles masking the 'true' small- 
angle scattering. 

The other advantage is due to the scattering law 
being for fundamental reasons a function of the scat- 
tering vector K only, where (Olivei, 1973): 

4n . 
IKI = ~ sin 0/2 (1) 

(0=scattering angle, 2=wavelength of the neutrons). 
Under favourable conditions, the angular resolution 

is comparable for X-rays and neutrons. Therefore, the 
obtainable IKI values can be a factor of ten smaller 
with neutrons than with X-rays. This means that fluc- 
tuations of relatively long range can be investigated in 
homogeneously oriented nematic liquid-crystal struc- 
tures. 

The main disadvantage of the neutron technique is 
the relatively low luminosity of neutron SOUlCeS. This 
intensity disadvantage, however, can be compensated 
in experiments by using (i) very long instruments with 
large slit widths and (ii) focusing systems with totally 
reflecting mirrors to obtain large solid angles. Because 
we are only interested in the ]KI (and not in the 0) res- 
olution, longer wavelengths can be applied which al- 
low shorter instruments at comparable intensities. 

Our presentation here of neutron small-angle seat- 
tering by dislocations in homogeneously oriented ne- 
matic liquid crystals will fall short of furnishing a com- 
plete guide to the construction of scattering relations, 
but will go a long way towards elucidating the physical- 
structural bases of such relations and hopefully will 
stimulate further detailed developments. We will find 
it useful now to start with a short account of the con- 
tent of the present paper. 

After a discussion of the essential features of the 
general formulae for neutron small-angle scattering 
from dislocations in homogeneously oriented nematic 
liquid crystals, the derivation of the scattering cross 
section for dislocations such as (i) stationary straight 
edge dislocations, (ii) moving edge dislocations and 
(iii) oscillating edge dislocations will allow the detection 
of the influence of diffusion processes and will provide 
at the same time a means for discriminating between 
stationary, moving and oscillating dislocations, simply 
by inspection of the experimental scattering curves and 
comparison of them with the theoretical ones. 

A further step in the refinement of our theoretical 
tools is represented by the consideration of dislocation 
loops consisting of finite numbers of straight segments, 
which will strengthen the theoretical analysis by ap- 
proaching more closely physical reality. The study of 

curved dislocations such as circular dislocation loops 
and helical dislocations will complete the analysis. 

Finally the examination of dislocation networks, 
such as Frank dislocation networks (Owen & Mura, 
1967), will provide a sound tool for inspecting and in- 
terpreting the most subtle experimental findings. 

2. Essential features of the formulae for neutron 
small-angle scattering from dislocations 

The scattering cross section for coherent disorder re- 
sulting from a given dislocational configuration can be 
obtained by immediate use of the Fourier transform 
of the fluctuations in density and displacement (Kri- 
voglaz, 1969; Schmatz, 1975): 

where 

1 I ~o(r)-~ 

do '_  1 aZl0]2 (2) 
d£2 N 

1 f divsexpiKrdr exp iKrdr = ~ v  ~v 

~3) 

in the Fourier transform of the relative density differ- 
ence or the divergence of the displacement field. 

In the above expressions N is the number of atoms 
contained in the volume V of the sample probed by 
the incident neutron beam, a is the nuclear scattering 
length, 12v= V/N is the average atomic volume, ~ is 
the mean density, o(r) is the density at position r, • is 
the scattering vector and s the displacement vector at 
position r. 

Homogeneously oriented nematic liquid-crystal 
structures are anisotropic from the elastic standpoint. 
This will cause the scattering to be more peaked in 
some directions than it would be for an elastically 
isotropic medium. Though the difference may be ap- 
preciable, conclusions so far drawn from small-angle 
scattering are little affected by the assumption of elastic 
isotropy. To this important question we will give more 
attention later, and in this section we will take for 
granted that the formulae used are very little affected 
by the assumption of elastic isotropy. The axis of anis- 
otropy will, anyway, without exception always be 
taken in the z direction for the cases considered later. 

For a given dislocation configuration, the expres- 
sion of the divergence of the corresponding displace- 
ment field can be obtained essentially by two methods, 
The first one is the direct method, which consists of 
evaluating the components of the displacement field s 
and thence deducing the divergence of s. 

The second method uses the expression for the com- 
ponents of the stress field associated with the displace- 
ment field to obtain directly the divergence of the dis- 
placement field. By this method, if a~, ay and az are 
the components of the stress field, gx, ey and ez are the 
components of the elongation strain and Sx, sy and sz 
the components of the displacement field, we have 
(Love, 1944) 
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and 

1 Osx 
~x= ~ [ax-vtG,+~z)]= ~-~ 

1 [a ,  - V(ax + az)] = O sy 

1 [az-v(a~+a,)]= Os~ 

OSx c3sr OSz 
d i v s =  - ~  + - ~  + ~-~-z = ex+ey+ez,  

(4) 

t5) 

/~ and v being the shear modulus and Poisson's ratio, 
respectively. 

This method is usually straightforward and simpler 
than the direct method, in view also of the fact that 
the expressions for the stress field can be found in the 
literature for a large variety of cases and configurations 
of dislocations. 

After the calculation of div s, it is necessary to eval- 
uate numerically the integral (4) and to substitute the 
results in expression (2), which finally yields the nu- 
merical values of the small-angle scattering cross sec- 
tion. 

As an application of the above formulae it is inter- 
esting to show that there is no contribution to scatter- 
ing from pure screw dislocations. The components of 
the displacement field of a stationary straight screw 
dislocation along the z axis with a Burgers vector of 
magnitude b are (Burgers, 1939) 

and therefore 

s~ = 0 ] 

Sy = 0  
b y 

Sz = ~ -  t a n -  1 --x 

div s = 0 

which yields no scattering according to equation (3). 
The same conclusion also holds for a straight screw 

dislocation parallel to the z axis and moving along the 
x axis with a uniform velocity v. In this case the com- 
ponents of the displacement field are given by (Frank, 
1949) 

sAt)=o ] 
s,(t) = 0  

b y(1-v2/f l2)  '/2 I (8) 
s~( t ) = -2~- t an-  1 x - vt I 

with 

As a consequence 
/~=,u/~. 

div s(t) = O . 

Even if we consider the more complex case of a 
straight screw dislocation oscillating in the neighbor- 
hood of the origin of coordinates with a small am- 
plitude A and frequency o9, the result is always a zero 
contribution to scattering. In this case the total dis- 

placement is the sum of the stationary displacement 
given by (6) and the time-dependent displacement due 
to oscillations. The time-dependent part of the dis- 
placement field is given by (Eshelby, 1949b) 

sx(o9, t ) = o 

sflo9, t )=O 

s=(og, t ) =  bAogy [Jl(coRlfl) cos cot 
4~R 

+ Y~(o9R/fl) sin cot] 

A o9x 
+ --~---[J2(2o9R/fl) sin 2o9t 

- Yz(2o9R/fl) cos 2o9t], (10) 

where R =  (x2+y2) 1/2 and J and Y are Bessel functions 
of the first and the second kinds. The corresponding 
divergence of the total displacement field is again zero. 

As a result of these simple examples, in the next 
sections we will mainly focus our attention on the study 
of edge-dislocation configurations which are strong 
sources of scattering, and we will consider only com- 
plicated configurations for screw dislocations, such as 
helical dislocations, which can yield some contribution 
to scattering. 

3. Scattering cross section of  a straight edge dislocation 

3.1 On the choice o f  the simplifying assumptions 
Now we are faced with two main problems in de- 

veloping explicit expressions for the small-angle scat- 
(6) tering cross section of a straight dislocation line: (1) the 

elastic anisotropy of the medium; (2) the finite length 
of the dislocation line. It has been already pointed out 
that the elastic anisotropy of the medium under con- 

(7) sideration causes the scattering to be more peaked in 
some directions, for example in the direction perpen- 
dicular to the glide plane for an edge dislocation. 
Eshelby, Read & Shockley (1953) and Leibfried (1953) 
found the displacement and stress fields for an arbi- 
trary homogeneous anisotropic solid when a straight 
dislocation along the z axis has an arbitrary Burgers 
vector. Since these solutions include constants which 
are roots of a sixth-order polynomial, explicit expres- 
sions are not possible except for a few special cases. 
Though the difference may be appreciable, conclusions 
that can be so far drawn from small-angle scattering 
are little affected by this assumption of elastic isotropy. 
Therefore we will take for granted the assumption of 
elastic isotropy in the calculations of the displacement 
and stress fields of any kind of dislocation. 

(9) With reference to the second point it is worth point- 
ing out that the analytical expression for the displace- 
ment and stress fields depends on the length of the dis- 
location segment and, as a consequence, a correspond- 
ing dependence should be also expected for the ana- 
lytical expression of the small-angle scattering cross 
section. 
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The sample of nematic liquid crystal under con- 
sideration has a finite thickness and therefore a straight 
dislocation line has a finite length determined by the 
spacing between boundary surfaces, which, however, 
are not free boundary surfaces. Therefore no addi- 
tional term should be added to the expression for the 
stress field contributed from a straight dislocation seg- 
ment, since the requirement that the total stress gives 
zero surface traction on the free boundary surface does 
not apply in this case. 

The analytical expression for the displacement and 
stress fields contributed from a straight dislocation seg- 
ment whose true length equals the thickness of the 
liquid-crystal layer is much more complicated than the 
corresponding expression from a straight dislocation 
of infinite or seminfinite length. 

It is however extremely important to compare the 
theoretical shapes of the scattering cross sections for 
single straight dislocations having infinite, semi-infinite 
and finite lengths in order to evaluate the differences 
and the errors that are made by replacing expressions 
for single straight dislocations of finite length (equal 
to the spacing between parallel plates containing the 
nematic liquid crystal) with the much simpler expres- 
sion for single straight dislocations of infinite length. 
These approximations would extremely facilitate the 
study of the small-angle scattering cross section of 
a single moving dislocation and a single oscillating 
dislocation. 

We will show that differences exist in the shape of 
the dependence of the scattering cross section on the 
length assumed for the straight dislocation, but con- 
clusions so far drawn from small-angle scattering for 
a moving dislocation and an oscillating dislocation by 
the assumption of infinite length are little affected. 

It is immediately obvious that the use of such an 
approximations cannot be extended to the study of 
dislocation loops. 

3.2 Stationary straight edge dislocation 
Now let us consider first the more difficult case of 

a straight edge dislocation of finite length, l. The line 
of the dislocation is taken as the z axis, which is per- 
pendicular to the parallel plates constraining the liquid 
crystal, Fig. 1. 

The dislocation is stationary at the z axis. The direc- 
tion of the Burgers vector is taken arbitrarily with com- 
ponents (b.,~, b ,  b~). 

The components ax, ay and a,, of the stress disloca- 
tion field are 

It ~byx - b:,y [ l -  z 
t T x  - -  4n(1 -v )  [ ~ t{x2+y'+(l-z)Z} 1/2 

Z 

{xZ+ y z + zZ} 1/2 ) 

xy(bxx + byy) [ l -  x 
x 2 + yZ [(x 2 + yZ + z2)l/z 

( 1 2 )  
x {x2+yZ+(l_z)Z}l/z x2Sr.y z 

l - z  1 2 ) ]  
- (x2+~4_z2),/, ((x2+y~+z2),,~ x2+y~ 

1 
+ bzxy ( -  {xZ+yZ+(l_z)Z}a/2 

' )} 
- -  (x z + y2 + zZ)S/2 , (11) 

p ~by_x_-__b~_y ( l - z  
cry= 4zff l -v)  I. xZ+y z {xZ+yE+(l-z)2} vz 

z ) xy(bxx + byy) 
- {x2+y~+z,}m + x,+.v 2 

l--z 1 
x [{xZ+yZ+zZ}l/2 ({xE+yZ+(l_z)Z}m 

2 ) l - z  
+ ~  - {x2+y2+z2}i/2 

1 2 

1 
-bzxy  ( - - { x  2 + yE-+(l_z)2}3/2 

1 )} 
+ { x Z + y 2 . + z 2 } 3 / 2  , (12) 

pv byx- bxy 
tr.,= 2n(1-v)  xZ+y 2 

( l_z z ) 
x {xZ+y2+(l_z)2}m {x=+y2+z2},/2, (13) 

/z and v being the shear modulus and Poisson's ratio 
respectively. 

X 

/ , / " ~ _  scattered neutron flux 

/~.mcident / ~ K  (scattering vector) 
/ neutron 

/ u x  ~ z (anisotropy axis) 

Fig. 1. General schematic configuration for neutron small- 
angle scattering, which will be adopted for all the cases 
without any exception. 
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Substitution of the three previous expressions into 
(4) yields the components of the strain field. Summing 
up the three strain components yields the divergence 
of the displacement field as shown by (5): 

1 { byx - b,,y 
div s = 4zc(1 - v) . ( 1  - v -  v a) x2 +y2 

( ,_z z ) 
× {x2+y2+~t_z )2 } l / 2  + {x,~+/_+z2}.2 • 

- (1 + v) xy(bxx + bzv ) [ l -  z 
x2+y  2 {X2-l-yZ+(l--Z)2}l/2 

x x 2 +y2 + ( l -  z) 2 + 

z + 
{x 2 + y2+z'} ' /2 

x (.x2+12 2 + z  2 + x ~ ) ]  + ( l + v ) b z x y  

x {x a+y2+zz}3/2 - {x z+yz+( l_z )z}  alz . 

(14) 

The divergence of the displacement field contributed 
from a half-infinite dislocation is obtained simply from 
the limit l---~ co in equation (14): 

~./2 
3C " 

7 

: ~ 4  

3 

2 

1 

M 
0 0105 0"1 0"15 0"20 0"25 0"30 0"35 = 

Fig. 2. Neutron small-angle scattering cross sections as a 
function of the scattering amplitude IKI for the significant 
case of ~: perpendicular both to the slip direction (along 
the x axis) and the dislocation line (along the z axis) for a 
stationary edge dislocation having a true length l equal to 
the thickness of the liquid-crystal sample and for an edge 
dislocation having fictitious lengths which are multiples 
of/ ,  notwithstanding that the true length of any disloca- 
tion under consideration remains unchanged and equal to 
l. The parameters of the MBBA homogeneously oriented 
nematic liquid crystal are: Poisson ratio v=0,49; shear 
modulu~ a=10 -s Newton/m2; 1=1 am; b=0,05 pm. 

div s -  
1 { byx - b~ y 

4re(1 - v) (1 - v - v a) x2 + yZ 

z xy(bxx  + byy) 
(1+ { x Z + y f + z Z } l / z ) - ( l + v  ) - -x-Z+y ~ ........... 

[ 2  z 
+ 

x (  1 2 
X2..~y2.+.Z2 -1- X2--@--~) ] 

bzxy 
-]-(1 -t" lt) {X 2 _[_y2 _[.. Z2}3/2 " (15) 

The displacement components of an edge disloca- 
tion of infinite length, with the line of dislocation 
taken as the z axis, are given by: 

b (  y 1 x y )  
sx(x, y, z) = ~ 2 t an -  x _ + x 2 ( 1 6 )  x 1 - v +y2 

b (2v-1 
s , ( x , y , z ) =  ~ \-~-((f-Z-~) log (x 2 + y2) 

1 y2 ) 
+ 1---Z--~v x 2 +y2 (17) 

Sz(X,y,z)=O , (18) 

where b is the magnitude of the slip, which occurs 
parallel to the x axis. 

The divergence of the displacement field from an 
edge dislocation having a fictitious infinite length, the 
line of dislocation being taken as the z axis, is given by 

b 2 v -  1 y (19) 
div s -  2re 1 - v X2-[- y 2" 

The corresponding expression for the small-angle 
neutron scattering cross section for any of the previous 
cases is then obtained through the use of expressions 
(2) and (3). 

The scattering cross section for a dislocation having 
a true length l in a nematic liquid-crystal layer having 
the same thickness is given by: 

do N a2[I+ ~ l+~  I 0 i 2 dO - V ~ -  dx dy div s dz . (20) 
-- ~ --I 

The scattering cross sections for dislocations having 
a fictitious length larger than the true value l are ob- 
tained from (20) simply by taking the fictitious length 
as the lower limit of the far right-hand integral. For a 
dislocation having a fictitious infinite length the upper 
limit of the far right-hand integral in (20) becomes + co 
and the lower limit - c o .  

The numerical integration of the previous multiple 
integral (20) yields the numerical values of the elastic 
small-angle scattering cross section da/d£2 for a cold- 
neutron beam of polarization P0 incident on a station- 
ary edge dislocation of finite, seminfinite or infinite 
length. 

In Fig. 2 we have reported the shape of the small- 
angle scattering cross section da/dl2 as a function of 
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the amplitude of the scattering vector K in the partic- 
ular but very significant case of K perpendicular both 
to the slip direction and to the dislocation line, the 
Bulgers vector being situated along the x direction and 
the dislocation line along the z direction. It therefore 
results that the scattering vector K is directed along 
the y axis. 

A family of small-angle scattering cross-section 
curves is reported for an edge dislocation having a true 
length l equal to the thickness of the liquid-crystal 
layer and for edge dislocations having fictitious lengths 
which are a multiple of l, notwithstanding the fact that 
the true length of any dislocation under consideration 
remains unchanged and equal to l. 

Inspection of Fig. 2 shows that the maximum of the 
intensity of the small-angle scattering cross-section 
curves increases for increasing values of the fictitious 
dislocation length, while the sample thickness remains 
unchanged. 

The maxima are displaced slightly toward higher 
values of the scattering vector for increasing values of 
the sample thickness. The intensity at [KI = 0  decreases 
for increasing values of the thickness of the sample. 

Slight differences exist between the theoretical scat- 
tering cross section resulting from a dislocation having 
a real length l, equal to the thickness of the nematic 
liquid-crystal layer, and those from dislocations of fic- 
titious lengths which are multiples of the liquid-crystal 
layer thickness but remain unchanged when the dis- 
location length is fictitiously increased. Moreover, the 
theoretical differences arising from the assumption of 
infinite length instead of the true length for a straight 
dislocation affect very little the conclusions that can 
be drawn for interpreting the experimental results, not- 
withstanding that the liquid-crystal layer has a finite 
thickness l and the straight dislocation also has the 
same finite length. 

As a consequence we will use the approximation of 
an infinite dislocation length for deriving the scattering 
cross sections resulting respectively from a moving and 
an oscillating straight dislocation in a nematic liquid- 
crystal sample of thickness l. 

3.3 Moving edge dislocation 
Let us consider a straight edge dislocation parallel 

to the z axis. The dislocation has a true length equal 
to the thickness, l, of the liquid-crystal layer. Accord- 
ing to the results of the previous section, we will as- 
sume, however, a fictitious infinite length for the mov- 
ing dislocation. This assumption will alter very slightly 
the final results and in return we will have to deal with 
simpler mathematical formulae. 

The dislocation is moving along the x axis with a 
uniform velocity v. The position of the dislocation is 
denoted by x = vt at time t. The components of the dis- 
placement field were first obtained by Eshelby (1949a). 
If at time t the slipped surface is defined by y = 0 and 
x< vt and the magnitude of the slip occurring in the 
x direction is denoted by b, then the components of 

the displacement field are given by 

f l2b [ F(I -- V2/~X2)1/2 
S x = - - -  tan-1 . 

~ V  2 X - -  v t  

+(v/2fl z -  1) tan -1 y(1 -v2/f12) t/2 ] 
X - - v t  

{(, lo+ ic_x-0, : 
S~,= 7--Vy -- 1. l__v2/~  2 

1-vZ12f12 log [ ( x - v t ) 2  + y2] l/z} 
(1--= v2/--P2) '~s t 1-v:/fl '- 

S z = 0  
where 

(21) 

(22) 

(23) 

(24) 
(25) 
f26) 

~2=~+2~)/e ,  

,l = 2 ~ v / ( 1  - 2v), 

/l and v being the shear modulus and Poisson's ratio 
respectively and Q the density of the material. 

The explicit expression for the divergence of the dis- 
placement field can be obtained by differentiating ex- 
pressions (21), (22), and (23) with respect to x, y and z 
respectively and summing up the results: 

div s =  f l zb  ~(1--V2/0~2) 1/z 2y--v2/c~2 
rCv [ (X--- Vt)2-+ y2(1 -- V2/~ 2) 

- ( 1 -  v~/2~ 21 (1 - v ' l ~ ' )  '/2 ( x _ v t )  ~ + y~(1 - v 2 / ~ )  " 

(27) 

The elastic small-angle scattering cross section for a 
moving edge dislocation in a nematic liquid-crystal 
layer of thickness l in the approximation of a fictitious 
infinite length for the dislocation is given by: 

. . . . . . . . . .  da N c~ 2 /~4b2 

d£2 V 2 ~2v2 

× dx _ u 2  0~2 1/2 
- - o o  - - o o  - - o o  

2y-v~ /~  ~ 
× 

( x -  vt) 2 + y2(1 -v2/~ 2) 

- C 1 - v ' 1 2 ~ ' )  ( 1 - v ~ / ~ ' )  "~ 

t i × (x _-v-i ) -+ y2( 1 _.v2/~)- jdz . (28) 

The set of curves reported in Fig. 3 shows the changes 
undergone by the shape of the curve of the scattering 
cross section versus the scattering vector K for increas- 
ing values of the uniform velocity of displacement of 
the dislocation. These curves have been traced for the 
particular but very significant case of K perpendicular 
both to the slip direction and to the dislocation line, 
the Burgers vector being situated along the x direction 
and the dislocation line along the z direction. 

With the scattering cross-section curve of a station- 
ary dislocation as reference, the scattering cross-section 
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curves tend to flatten out and to become less and less 
sharp for increasing values of the displacement velocity 
of the dislocation. Therefore it should be easy to dis- 
tinguish between stationary and moving dislocations 
by examining the shape of the experimental small-angle 
neutron-scattering cross-section curves. 

In Fig. 4 we have drawn the equicontour lines Iffl z 
for the relative scattered neutron intensity around an 
edge dislocation for several values of the uniform ve- 

4 /s) = 

IV/ \\\ 
0"05 0"1 0"15 0"20 0"25 0"30 0'35 I~1 

Fig. 3. Neut ron  small-angle scattering cross sections as a 
function of the scattering amplitude Izl [K perpendicular 
both to the slip direction (x axis) and to the dislocation 
line (z direction)] for different values of the translation 
velocity of the edge dislocation in the x direction. For the 
parameters of the MBBA homogeneously oriented nematic 
liquid crystal see Fig. 2. 

v(m/s)=0 

Fig. 4. Equicontour  lines 10] 2 for the relative scattered neut ron  
intensity a round  an edge dislocation for several values of  
the uniform velocity of dislpacement in the x direction 
[the scattering vector ~ is taken perpendicular both to the 
slip direction (x axis) and to the dislocation line (z direc- 
tion)]. For the parameters for the MBBA homogeneously 
oriented nematic liquid crystal see Fig. 2. 

locity of displacement in the x direction [the scatter- 
ing vector K is taken perpendicular both to the slip 
direction (x axis) and to the dislocation line (z axis)]. 

3.4 Oscillating edge dislocation 
Consider a straight edge dislocation parallel to the 

z axis. The dislocation is oscillating in the neighbor- 
hood of the origin of coordinates with a small am- 
plitude A. 

The position of the dislocation is defined by: 

x = A  sin cot, y = 0  (29) 

and the velocity by: 

v(t ) = Aco cos cot. (30) 

The displacement field s* is the sum of the time- 
dependent field s,o(t) and the time-independent field s. 
The components of the time-independent field, s, are 
given by equations (16)-(18), while the time-dependent 
components of the displacement field were first ob- 
tained by Kiusalaas & Mura (1964). The components 
of the complete displacement field can be expressed in 
the form, 

* = sx + s,ox~t) Sx 

* = 0 .  (31) Sz 

The terms sx and s r are the time-independent com- 
ponents of the displacement as given by equations (16)- 
(18), while s,o~ and so, v represent the time-dependent 
components of the displacement field and are given by: 

s,o~(t) = -  b'KD-A-8 { A3 [Z ~ sin ( tan-1 ~ -)x 

- Z ~  sin 3 (tan-X Y ] ]  
\ X l J  

+Z~ sin ( t a n - '  Y)  +Z~ sin3 (tan-tY-)} 
(32) 

s,oy(t) = b'KBA 8 { A a [ Z ~ c ° s ( t a n - x y )  

+Z~ cos 3 (tan-~ Y ) ]  

+ Z ~ c o s ( t a n  - l y )  - Z ~ c o s 3 ( t a n - l Y ) }  

(33) 

so,..(t) = 0 ,  (34) 

where 
Z ~ =  Y,,(K~R) sin cot + J,(K~R) cos cot, 
Z~ = Yn~KBR ) sin cot + J, fK~R) cos cot, 
R =(x  2+y2)1/2, 

P2=/4 , 
2 =2/ tv / (1-2v) .  
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b~ is the slip produced along the slip surface defined 
by y = 0, x < 0 during the oscillations,/t and v are the 
shear modulus and Poisson's ratio, respectively. II, and 
Jn are Bessel functions of first and second kind. 

The contribution to the scattering cross section from 
the static displacement field has been already calcu- 
lated and therefore only the contribution from the 
time-dependent displacement field remains to be eval- 
uated. 

The divergence, div s,o(t), of the time-dependent dis- 
placement field is given by 

divs'°(t)-b~KBA8 { A3 [ c ° s (  tan-~ Y) 

x (  Y 2y Z~) 
{ x2 + y2 } V 2 Z ~ xZ + y 2 

+ c o s g ( t a n  - l y )  Y Z~] {x2+y2}l/2 

Y 
- c o s 3  (tan - I y )  {X2._}_y2}l/2 Z#2 

Y 
+cos (tan -I  Y)({xZ..l_y2}l/2 Zg 

z:)} x 2 + y2 

b~K~A [ s in ( t an  

x {x2+y2}12 Z ~ -  x2+y------ 2 

X 
- s i n 3 ( t a n - l y )  {x2+y2},/2Z~] 

X 
+s in3  (tan -~ Y) {x2+y2}t/2 Z Bz 

zero-frequency or stationary dislocation. Oscillations 
from dislocations can thus easily be detected from 
small-angle scattering cross-section curves, which 
should exhibit an oscillatory behaviour around the 
scattering curve for a zero-frequency or stationary dis- 
location. 

4. Scattering from dislocation loops and dislocation 
networks 

4.1 Stationary dislocation loops consisting of finite 
numbers of straight segments 

The results obtained for a straight dislocation of 
finite length can be used for all dislocation loops which 
consist of finite numbers of segments. For instance in 
a triangular dislocation loop, the stress field is the sum 
of contributions from these three segments. 

We have calculated numerically the small-angle scat- 
tering cross section for several geometrical loops (tri- 
angle, rectangle, square, pentagon, hexagon, dodeca- 
gon), which, however, always have the same perimeter. 
The direction and the intensity of the Burgers vector 
for each segment of any geometrical figure are reported 
in Fig. 6. 

It is interesting to point out (Fig. 6) that the peak 
in the scattering cross-section curve for a scattering 
vector parallel to the y direction is displaced toward 
higher values of the scattering vector on going from a 
triangular loop to a dodecagon loop. This is because 
all the closed loops of dislocations have been chosen 
with the same perimeter. In fact, it is known from 
variational theory that for a fixed perimeter, the circle 
presents the largest area among all the possible geo- 
metrical figures. In the present case the dodecagon 
presents the largest area among, the geometrical figure 
that have been considered. So the larger the area, the 

X 

xa +y2 

The corresponding small-angle scattering cross sec- 
tion is then given by: 

da _ N a2 dx dy div s,~(t)dz (36) 
dr2 V 2 

The influence of the frequency of oscillation on the 
total scattering cross section, which is the sum of the 
time-independent and the time-dependent scattering 
cross sections, is shown in Fig. 5. 

The small-angle scattering cross section assumes an 
oscillatory behaviour which becomes more pronounced 
in amplitude for increasing values of the frequency of 
oscillation. 

The oscillations in the curves of the scattering cross 
section versus the scattering vector take place approx- 
imately about the scattering curve corresponding to a 

5 
o 

~4 

fl 

to, i '~ 

) z  

az)=O , I*l 

o!05 0'-1 o'.~s 0'-2 0.25 

Fig. 5. Neutron small-angle scattering cross section as a func- 
tion of the scattering amplitude IKI [K perpendicular both 
to the slip direction (x axis) and to the dislocation line (z 
direction)] for different values of the oscillating frequency. 
For the parameters for the MBBA homogeneously oriented 
nematic liquid crystal see Fig. 2. 



A L F R E D O  OLIVEI  991 
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Fig. 6. Curves of the neutron small-angle scattering cross 
section v e r s u s  the scattering vector in the y direction for 
several dislocation loops consisting of finite numbers of 
straight segments. The loops have the same perimeter 
which has been taken equal to 0.6 Itm. For the parameters 
for the MBBA homogeneously oriented nematic liquid 
crystal see Fig. 2. The Burgers vector Is perpendicular to 
each segment of any geometrical figure and has a constant 
intensity of 0.05 Itm. All Burgers vectors point towards the 
inside of the loops. 
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Fig. 7. Neutron small-angle scattering cross-section curves 

for helical dislocation with a constant radius e (=0"3 Itm) 
and a variable pitch p. (The scattering vector K lies in a 
plane perpendicular to the axis of the helix). For the par- 
ameters for the MBBA homogeneously oriented nematic 
liquid crystal are Poisson ratio v=0.49, shear modulus 
I t=  10 -s Newton/m 2, l =  15 Itm. 

smaller the value of the scattering vector for which 
the peak of the scattering curve occurs. 

It is interesting to point out that the scattering curves 
for single straight dislocations are sharper than the cor- 
responding ones for dislocation loops consisting of 
finite numbers of dislocation segments, as inspection 
of Fig. 2 and Fig. 6 shows at once. The peaks of the 
scattering curves for single straight dislocations occur 
at values of the scattering vector that are noticeably 
smaller than those for dislocation loops. This fact pro- 
vides an easy means of discriminating between single 
dislocation segments and dislocation loops simply by 
comparison of the experimental scattering cross sec- 
tions with the theoretical ones. 

The scattering from a circular loop will be examined 
in the next section. 

4.2 Stationary curved dislocations 
In the continuum theory of dislocations it is well 

known that the equilibrium form of dislocation seg- 
ments is a straight line, circle or helix. The possibility 
of the formation of a helical dislocation from a screw 
dislocation was first put forward by Seitz (1952) and 
the existence of such helical forms has been experi- 
mentally verified by many investigators since the initial 
observations by Bontinck & Amelinckx (1957). 

The helical form is of great importance, since dis- 
location tangles in homogeneously oriented nematic 
liquid crystals may be interpreted on the basis of such 
dislocations. It is to be expected that helical dislocations 
have consistent characteristics for a pitch varying over 
a considerable range. 

Expressions for the stress field of a helical disloca- 
tion of uniform shape with the Burgers vector along 
its axis have been obtained and solved numerically by 
Owen & Mura (1967b). 

A study of the numerical results obtained for a helical 
dislocation of radius c and pitch p shows that the scat- 
tering decreases considerably when the pitchp becomes 
much larger than the radius c and the helix approx- 
imates a straight screw dislocation running in the z 
direction. In fact, as the pitch becomes infinite the 
stress field becomes that associated with a straight 
screw dislocation, which yields no small-angle scatter- 
ing. 

Moreover, for a long helix the degree of asymmetry 
with respect to any plane normal to the axis is small 
and the helix also exhibits almost axial symmetry with 
respect to its axis. For this reason the peak in the scat- 
tering curves of Fig. 7 appears at zero scattering vector, 
the scattering vector being in a plane normal to the 
axis of the helix. 

For the same reasons, the equicontour lines for the 
scattered intensity as a function of the angle between 
the scattering vector and an arbitrary reference axis, 
both contained in a plane perpendicular to the axis of 
the helix, are concentric circles. In fact, Fig. 8 shows, 
for several values of the ratio between the pitch and 
the radius of the helix, equicontour lines for the rela- 

A C 32A - 5 
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tive scattered intensity, which are all circles centred on 
the origin, which also coincides v, ith the relative scat- 
tered intensity curve of a screw dislocation. 

At this point it should be interesting to examine the 
scattering curves for a circular dislocation loop. The 
analytic expressions for the stress field of a ciicular dis- 
location loop can be obtained from the general ex- 
pressions for helical dislocation configurations in cyl- 
indrical coordinates, as given by Owen & Mura 
(1967b). The Burgers vector in this case everywhere 
lies tangential to the line element of the dislocation. 

The actual calculation and the final expressions are 
somewhat lengthy and involved and, therefore, they 
will not be reproduced here. Only the normal com- 
ponent in the z direction of the stress field will be given 
because of its relative simplicity: 

ltb {(r+c)_XK ( 2(rc)~/2 1 
sz = 2~z(1 - v) \ - ~ 1  

- ( r - c ) - l E ( 2 ( r c ) l : z ) ~  (37) 
\ r+c  . I '  

where r = (x 2 +yZ)l/2, c is the radius of the circular loop, 
E and K are the modified Bessel functions of zero order 
of the first and second kinds respectively. It can be 
shown that the remaining components of the stress 
field contain terms of a form similar to equation (37). 

The corresponding scattering cross sections for a 
circular dislocation loop having Burgers vector every- 
where tangential to the line element of the dislocation 
are shown in Fig. 9 for several values of the radius c. 

As for the case of helical dislocations, the peak of 
the scattering curve is found for a zero scattering vec- 
tor owing to the symmetry of the scattering configura- 
tion. 

For increasing values of the radius, the intensity of 
the peak decreases and the scattering curve becomes 
flatter. 

4.3 Scattering from a plane dislocation network 
The most representative plane dislocation network 

is the Frank network, which has also been the most 
studied configuration in the past. 

The Frank dislocation network forms a plane reg- 
ular hexagonal system as shown in Fig. 10, situated a 
distance d from the interface coinciding with the xy 
plane. 

The edge length of the regular hexagon is taken as 
2a. The whole network may be considered to be three 
systems of dislocation segments parallel to AB, CD 
and AF, denoted by the superscripts 1, 2 and 3, respec- 
tively. The density of dislocations parallel to AB (de- 
noted by the superscript 1) has been expressed by Owen 
& Mura (1967a) as a combination of Fourier integrals 
and Fourier series. The density of dislocations parallel 
to BC can be expressed in a similar form by changing 
the coordinate system to ~ and r/axes and taking the 
origin of coordinates at the midpoint of BC. A similar 
treatment can also be given for the dislocations parallel 

to FA by changing the coordinate system to ~' and 
r/' axes and taking the origin of coordinates at the 
midpoint of AF. 

The total stress field due to all the dislocations is 
the sum of the three fields contributed by dislocations 
parallel to BC, CD and A F. 

Fig. 8. Equicontour lines 10"l 2 for the relative scattered neutron 
intensity as a function of the angle between the scattering 
vector K and the y direction for several values of the ratio 
between the pitch and the radius of the helix. For the par- 
ameters for the MBBA homogeneously oriented nematic 
crystal see Fig. 7. 
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Fig. 9. Neutron small-angle scattering cross-section curves for 

circular dislocation loops having Burgers vector tangential 
to the line element of the dislocation everywhere for several 
values of the radius of the circular loop (the scattering 
vector lies in a plane perpendicular to the axis of the circle). 
For the parameters for the MBBA homogeneously oriented 
nematic liquid crystal see Fig. 7. 
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The actual calculation and the final expression are 
somewhat lengthy and cumbersome, and therefore, 
they will not be reproduced here in their entirety. Only 
the normal stress component of the total stress field 
will be given because of its relative simplicity and for 
background information only. Detailed calculations of 
the remaining stress components can be found in 
Owen & Mura (1967a). We have for the stress com- 
ponent in the z direction 

2/~(2+/~) 1 

a~ = 2 + 2/z 3ai/3 

{b~ ~ ~ N(z+d)  exp {iN(y+ilz+dl)} × 

n = 2 , 4 . . .  

Fig. 10. Illustration of Frank network of dislocation indi- 
cating Burgers vectors and the three coordinate systems. 
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Fig. 11. Curves of the neutron small-angle scattering cross 
section versus the scattering vector taken parallel to the 
y axis for several values of the edge length, 2a, of the hexagon. 
The parameters for the MBBA homogeneously oriented 
nematic liquid crystal are: Poisson ratio v=0.49; shear 
modulus/t= 10 -s Newton/m2; I= 15 am; a=0.1 am. 

with 

+ ~ sin aM Iz + dI(MV(-M-T-+ N z) 
m + n = 2 . 4  . . . .  aM 

x exp { - I z  +dly(M 2 + NZ)} 

x {(MNbit)/b~ ~) + N 2) exp {i(Mx + Ny)} 
21_. ( __  /1At M'k(1)/k(1) {i(Mx-- ivy) } . . . . . .  x /,-'2 +NZ) exp 

+ b~z 2) ~ N(z+d)exp  {iNOl+ilz+dl} 
n = 2 , 4 , . . .  

+ ~ sin aM Iz + dl~/(-M ~ + U 21 
r e + n = 2 , 4  . . . .  aM 

x exp { - I z  + dlI/(M 2 + N2)} 

x {(MNb~2'/bl 2) + N 2) exp {i(M~ + Nr/)} 

+(-MNb(x2)/b~ 2~ + N 2) exp { i (M~- Nrl) } 

+b~ a) ~ N(z+d)exp{ iN(~ '+i l z+dl}  
n=2,4,... 

+ ~ s inaM iz+dl~/(M2+N2) 
r e + n = 2 , 4  . . . .  aM 

x exp { - I z  +d l  1 / (M 2 + N 2) } 

t jt,c~rh(3)/t, c3) {i(M~' + NJI')} x~ . . . . . .  x w2 +NZ) exp 

+ ( -  Mgb~a)/b? ) + g 2) exp {i(M~'-  Nr/')}~ 
J 

M=mn/3a and N=nn(al/3 ) . (38) 

The remaining components of the stress field of the 
dislocation network contain terms of a form similar 
to equation (38), as shown by Owen & Mura (1967a). 

The divergence of the displacement field can be cal- 
culated by using equations (4)-(5). Then the small- 
angle scattering cross section of a Frank dislocation 
network can be evaluated by numerical integration, 
through the use of equations (1) and (2). 

The general characteristic of the stress field compo- 
nents is that the stress field is inversely proportional 
to the edge length of the hexagon, 2a, and decreases 
exponentially with the distance from the plane of the 
network. 

For example, the values of az along the z axis at 
x=0 ,  y=a/3 (intersecting the centre of the hexagon) 
reach a maximum value at about z =  a, and the com- 
ponents b~ *), namely the screw components, do not 
contribute to the normal stress. The stress magnitude 
depends only on the term t2:b(1)-+-b(2~+z b~3)~z:, which must 
equal 3b~ 1) from the law of conservation of Burgers 
vector at a node, namely b(zt)= (b(22)+ b~ 3)) cos 60 °. 

The effect of the edge length, 2a, of the regular hexa- 
gon forming a plane regular hexagonal dislocation net- 
work, on the shape of the small-angle scattering cross 
section is reported in Fig. 11. The scattering vector has 
been taken parallel to the y axis. For increasing edge 
lengths, the peak in the scattering cross-section curves 
is shifted toward smaller values of the scattering vector 
and decreases in intensity. It is therefore possible to 
draw the peak value of the scattered intensity as a 
function of the edge length 2a of the regular hexagon. 

A C 32A - 5* 
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For increasing values of the edge length there is a 
very noticeable decrease of the scattered intensity, as 
Fig. 12 shows very clearly. 

5. Conclusion 

The existence of lines or regions of discontinuity in 
the ordered structure of homogeneously oriented ne- 
matic liquid-crystal layers makes possible the setting 
up of dislocations of various kinds. We have shown 
that the shape of the small-angle scattering curves is 
mainly determined by the kind of dislocation configura- 
tion exhibited by homogeneously oriented nematic 
liquid crystals. As a consequence we have made a com- 
plete examination of the shape of the neutron scatter- 
ing curves at very small scattering vectors, of the order 
of 0.05~0.1 nm -1, for the most significant cases of 
dislocation configurations. 

This study gives a partial guide to the construction 
and the interpretation of scattering relations for any 
kind of possible dislocation configuration in homo- 
geneously oriented nematic liquid crystals, e.g. for sta- 
tionary straight edge dislocations, moving edge dis- 
locations, oscillating edge dislocations, curved disloca- 
tions and dislocation networks. 
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Statistical Bias in Least-Squares Refinement 
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Statistical fluctuations in counting rates etc., as well as defects in the structural model, can introduce 
bias in the estimation of parameters by least-squares refinements. Of the reslduaIs in common use, 
only unweighted R2 = ~,(Io-L) 2 is free from statistical bias. Order-of-magnitude estimates of the bias 
can be derived, but it seems better to avoid it by adjusting the weights. To the second order, refine- 
ment of R2 is unbiased if the intensity used in calculating the usual weights is not Io but -}(Io+2Ic). 
There seems to be no simple method of avoiding bias in RI. 

Introduction 

Estimates of quantities obtained by or from physical 
measurements may differ from the true values for one 
or more of three reasons. 

(i) Systematic errors (defects in the model). In crys- 

tallographic investigations these may include incorrect 
allowance for absorption or extinction, incorrect as- 
sumptions about atomic scattering factors or thermal 
motion, overloading of counters or amplifiers, and so 
on (Shoemaker, 1968; Wilson, 1973). 

(ii) Random errors. In crystallographic investiga- 


